Role of Kruppel-like factor 4 in neurogenesis and radial neuronal migration in the developing cerebral cortex.

نویسندگان

  • Song Qin
  • Chun-Li Zhang
چکیده

Transcription factors play key roles in the formation of a multilayered cerebral cortex consisting of neurons and glial cells. Krüppel-like factor 4 (KLF4) is expressed in neural stem cells and controls axonal regeneration. Its dysregulation leads to hydrocephalus in postnatal mouse brains. Here, we further show that KLF4 regulates neurogenesis and radial migration of neurons in the developing cerebral cortex. Neural progenitors with constitutive expression of KLF4 fail to migrate and develop into mature neurons but, rather, form cells with a glial identity. Notably, the JAK-STAT pathway is altered by KLF4, with increased phosphorylation of STAT3 at tyrosine 705. Blocking STAT3 activation with a dominant negative form can rescue the migration defect induced by constitutive KLF4 expression. Furthermore, downregulation of endogenous KLF4 significantly promotes radial migration and the transition of newly born migrating neurons from multipolar to bipolar morphology. Together, these results suggest that precise regulation of KLF4 expression is critical to neuronal differentiation and migration during the formation of a cerebral cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiopoietin-2 regulates cortical neurogenesis in the developing telencephalon.

Vascular-specific growth factor angiopoietin-2 (Ang2) is mainly involved during vascular network setup. Recently, Ang2 was suggested to play a role in adult neurogenesis, affecting migration and differentiation of adult neuroblasts in vitro. However, to date, no data have reported an effect of Ang2 on neurogenesis during embryonic development. As we detected Ang2 expression in the developing ce...

متن کامل

Scratch2 modulates neurogenesis and cell migration through antagonism of bHLH proteins in the developing neocortex.

Scratch genes (Scrt) are neural-specific zinc-finger transcription factors (TFs) with an unknown function in the developing brain. Here, we show that, in addition to the reported expression of mammalian Scrt2 in postmitotic differentiating and mature neurons in the developing and early postnatal brain, Scrt2 is also localized in subsets of mitotic and neurogenic radial glial (RGP) and intermedi...

متن کامل

Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex.

During neuronal migration to the developing cerebral cortex, neurons regulate radial glial cell function and radial glial cells, in turn, support neuronal cell migration and differentiation. To study how migrating neurons and radial glial cells influence each others' function in the developing cerebral cortex, we examined the role of glial growth factor (a soluble form of neuregulin), in neuron...

متن کامل

BDNF/MAPK/ERK-induced BMP7 expression in the developing cerebral cortex induces premature radial glia differentiation and impairs neuronal migration.

During development of the mammalian nervous system, a combination of genetic and environmental factors governs the sequential generation of neurons and glia and the initial establishment of the neural circuitry. Here, we demonstrate that brain-derived neurotrophic factor (BDNF), one of those local acting factors, induces Bone Morphogenetic Protein 7 (BMP7) expression in embryonic neurons by act...

متن کامل

Administration of Leukemia Inhibitory Factor Increases Opalin Expression in the Cerebral Cortex of Male Balb/C Mice An In Vivo Study

Background: Leukemia inhibitory factor (LIF) is a neurortophic cytokine which plays an important role in the neural cell survival. Expression of LIF and its receptor, LIFR, in different brain regions has been demonstrated. Based on evidences LIF plays an important role in the modulation of neurogenesis and glial responses to injury. Up-regulation of LIF after central nervous system (CNS) damage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 32 21  شماره 

صفحات  -

تاریخ انتشار 2012